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1. INTRODUCTION

Let Ul,U2,...,UN__l and V ,...,Vn be independent random samples from

continuous distribution iunctions (d.f.) F and G respectively. The

two-sample problem consists of testing the hypothesis that these two
distributions are the same. As will be apparent soon, we may assume
without loss of generality that a probability transformation has been
performed on the data so that both distributions have the unit inter-

val [0,1] as their support, and the first sample comes from the uni-

form distribution on [0,1]. Let
G* = gop *
be the d.f. of the second sample after the transformation. Then the

null hypothesis to be tested may be written in the form

(1.1) H : G*(v) = v, 0 S v < 1.

Let

=i
N
[=]
N -
N

denote the order statistics from the first sample. Furthex, define

uy=0 and Uy =1+ U o fork 2 N,

Circularly for convenience. The first order spacings are given by

.ﬁ
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~
]

1,...,N;

while the m-th order spacings are defined as

(1.2) T;m) = Ulmer T Upoyr KOS LeZeesooNe

Tests based on first order spacings have been studied extensively foy

the one-sample goodness-of-fit problem. see for example Pyke [13]

and Rao and Sethuraman [17]. Results using higher-order spacings,

with m > 1, have been obtained by Del Pino [31], Cressie [2] and Kuo

[10].

and Rao

For k = 1,...,N define the first order spacing-frequencies as

Sk = the number of Vj‘s in the interval [Uk_l, Ui)

and the m-th order spacing frequencies by

the number of Vj's in the interval

L} 1
e 1s Ykem-1’

= > N.
where Sk Sk-N for k N

e two-sample problem based on these

This paper deals with tests of th

s . : m .
m-th order spacing frequenciles. Since these numbers {Sé )} remain

invariant under probability transformations, we can assume the dis-

tribution of the first sample to be uniform and frame the hypothesis

as in (1.1).

Tests based on {Sk}, the first - order spacing frequencies, for _the

two-sample problem have been considered by Dixon [4], Godambe [6l.

Blumenthal [1], Rao [l5], Holst and Rao [8], [9] and Rao and Mardia

[16].

Since we will be concerned primarily with asymptotics, we take two

non-decreasing sequences of positive integers, {Nv} and {nv}, and
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assume throughout that

N
v
) = — > p, < 1.
sively for rv nv P o <p
ke [13)
acings
| g8 Note that the spacings, dependent on Nv' should be labeled as {Tét)}.
and K
. gimilarly, the spacing frequencies, dependent on both Nv and nv,
should be labeled {Sit)}. So we are dealing with triangular arrays
of random variables,
as
(rf™ x = 1,...,8) anda {s™,x=1,...,8} for v > 1.
kv v kv v
corresponding to the v-th such array, let hv(.) and {hkv(-),k = 1,.u%
’Nv} be real-valued functions satisfying some regularity conditions
to be specified later. Define
val
Nv Nv
1 (m) (m)
z =—== 7§ h_ (s ) and z*¥ = —= § h(s ),
k
v /Nv kel v kv \Y N, x=1 kv
based on the (NV - 1) U-values and the nv V-values. Though ZG is

just a special case of Zv where the functions {h v} do not vary with

k
k, we will distinguish these two cases throughout, since their asymp-

on these

totic behaviour under local alternatives, is gquite different. The
remain
Wald-Wolfowitz Run Test and Dixon [4] test are of the type ZS, whereas
the dis-
the Wilcoxon-Mann-Whitney test is of the form ZV. In fact, any linear
othesis
e function of the U-ranks in the combined sample can be expressed as a
special case of Zv' The dependence on v will be suppressed to simplify
notation except where it is essential for clarity.
for the
be [6], . : !
A few words about notations: The symbol "~" stands for "distributed
d Mardia . ) D . . ; .
as" while " — " will denote "convergence in distribution". For any
sequence of random variables Xn' we write
ake two
}, and X = Op(g(n)) IS xn/g(n) + 0 in probability

e
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and write

X, = Op(g(n))
if, for each € > 0, there is a K€ < = gsuch that
P(|Xn/g(n)| > K) < e

for all n sufficiently large. N(p,I) will denote a normal distriby-
tion with mean p and variance-covariance matrix I, and U(0,1) the unji-

form distribution on the unit interval. Mult(n; p ..,pk) will de-

i
note a multinomial distribution based on n trials with k cells haVing

probabilities pl,...,pk and n will stand for a negative binomial rap-

dom variable with probability function

(1.4) P(n = 3J)

Poi(A) will denote a Poisson distribution with parameter A, and

the probability at j. Finally I'(m,1l) will denote a gamma distribu-

tion with density

x 2 0

otherwise.

The three following facts about the spacing frequencies (Sl,...SN)

will be useful, later on.

(a) Under the null hypothesis, (1.1),

for each vector of non-negative integers (jl,...,jN) s.t.



iistribu-
) the uni-
will de-~
l1s having

>bmial ran-

and

istribu-

|---SN)
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N
T 5. meme
k=1 E
(b) If we let 51,...,€N denote independent and identically dis-
tripbuted (i.i.d.) geometric random variables with
Pl = 3] = ———— , § =0,1,2
= vyl = TN A AL
k (1 + )7

then it is easy to verify that, under the null hypothesis

N
(1.7) (SyreeerS) ™ (gl,...,gNI I g, =n).
k=1
(c) Given the vector of spacings
22 (Tl,sz---:TN): ;

let X.,X

o 2,...,XN be independent Poisson random variables with

Xk o Poi(nTk), k =1,2,...,N.

Then under the null hypothesis

N
..., , ey X } X, = n)

(1.8) (s.,8
1 1

T) v (X)X

2! N| 2 Nl )
1

Frequently in this paper it will be convenient to use the notation
(m) (m)
£ X '

k! K etc. to denote rolling sums defined analogously to those

in (1.3) for Sﬁm).

The paper is organized as follows: In Section 2, we consider test
statistics of the form Zv' and derive their asymptotic distribution
under the null hypothesis. In Section 3 we obtain the distribution
of these statistics under.an appropriate sequence of local alterna-
tives. By computing the Pitman Asymptotic Relative Efficiencies
(ARE's) we show that among this class, the asymptotically Locally

Most Powerful (LMP) test is a linear combination of the spacing-fre-

R R R RRRRRRRORREE=ee_ennmnnI™I=
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quencies. Section 4 deals with the symmetric statistic ZG and its
asymptotic distribution. By considering alternatives which converge
to the null at the rate of n_&, the asymptotically LMP test isderivea
| to be that based on sum of squares of the spacing-frequencies. The
results of this paper extend those of Holst and Rao [8] to the m-th

order spacing-frequencies where m Z 1.

2. NONSYMMETRIC TESTS UNDER THE NULL HYPOTHESIS

We consider the class of statistics of the form

(m))

_1 N
- 2
A N E By (S,

Y

where the functions {hk} satisfy the following

ASSUMPTION A. The real-valued functions {hk(-)} defined on {0,1,2,

...} satisfy Assumption A if they are of the form

h, (3) = hiz——= , 3) for k = 1,2,c0.,N, 3 = 0,1,2,00. ,

for some function h{u,j) defined on (0,1) x{0,1,2,...} with the prop-

erties:

(1) h(u,j) is continuous in u, except perhaps for finitely

many u, and the set of discontinuities, if any, is independent of j;

where h(e) is a func-

is not of the form c+j + h(u)

h(u,j)
[0,1]

(ii)

tion on and c € R;

1
(iii) J E(h4(u,n))du < », where n has the negative binomial dis-
[¢]

tribution (1.4).

without loss of generality,

We may add,

(m)

” )) = 0 under the null hypothesis, (lL.1).

1 N
(iv) EB( o= L n(s
1



D
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ind its rRecall that by the representation given in (1.7) we have
converge
is derivegq N
1 v (m)
7z = == ho(e, 0] g, = )
> S . The
v /N k=1 k "k T k
the m-th
where El,...,EN are i.i.d. geometric random variables. The following
theorem on the asymptotic distribution of Zv can be obtained as a
special case of Theorem 2 of Holst [7), p. 553, by taking (Ek,hk(gk))
in place of (Xk,Yk) in that theorem.
THEOREM 2.1. If M,N > ® such that (hereafter abbreviated s.t.)
§+Y, 0 <y €1,
N
and there exists some Yo <1 s.t. i < vy € 1 implies that
{o,1,2,
M-m £
m 0 A B
n (2™ /N v Py
ey BE )
‘}N( r )l
M
- 1 —_— 0 B
I (g -2 x//F@+D) v !
k=1
the prop-
where AY and BY are constants s.t.
nitely A - B -+ B > 1
¥ Al, ¥ 1 as 'y i
ent of j;
then
is a func-
N
1 (m) D 2
{ ) n (s, > n(o,a = B D

/N k=1
omial dis-
To establish the asymptotic normality required in Theorem 2.1, we
need only verify the following Liapunov type condition (2.1) for m-

dependent sequences. (cf. Orey [12])

PROPOSITION 2.1. Let {xk:k > 1} be a sequence of m-dependent random

(1.1). variables with zero means, and for some § > 0, let

EER R RS SESE—————..
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Let oi be the variance of (Xl +

This gives us an easily verified condition that is sufficient fox

to hold, using which we prove

Theorem 2.1

THEOREM 2.2. If the functions {hk(-)} satisfy Assumption A, and if

M
M,N » « s.t. 3y 0 <y <1, then

o 1 r
T (g, -2 ==
1 r yYl+r Y

where A ,B are constants s.t. A_ » A, and B > B as Yy > pI!
Yy Y 1 i 1

Proof: The joint asymptotic normality is established by showing that
condition (2.1) holds for the (m - 1) dependent random sequence de-

fined (for any fixed real numbers t and s) by

e (m) _ 1 ==
| Xk—thk(gk )+ os. (B r)r//l+r.

‘ The argument is very similar to that of Corollary 2.1 of Holst and

Rao [8]. Because of condition (iii) in Assumption A, the term

M-m M-m
5 =1 i
/2 z ]2+6 = 1 E(X2+<S)

k=1

N
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tends to a finite limit as does

3 M-m
Var [N 2 z Xk]
k=1
Thus in the ratio
M-m
+
I EIN 2xk]2 s
1
M-m ’
var[ | N 2x j1%8/2
1 k

the numerator converges to zero while the denominator remains bounded

away from zero so that Condition (2.1) is satisfied.

ent for
All that remains then is the calculation of AY and BY. Now
A, and if
_1 M=m (m)
A_ = lim(n 2 ] hy (,.77))
T N 1
m-1 Y
= 7 j Cov(h(u,gim)),h(u,E](_r:])())du
k=-m+1 o]
and
- M-m (m) M ; .
= B_ = limCov( hy (&, y/VN, ] (g, - ;)r//N(l ¥ r))
T N 1 1
wing that ; Mim - o
lence de- = lim ————— Ccov(h_ (& Y, E )
Noo NV1 + r y=3 k' 7k "k
p JY
= ———— Cov(h(u,n),n)du
Y1+ g e !
1lst and where

erm

. v
p = lim —
el n\)
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and n has the negative binomial distribution (1.4). We see finally

then that
1

m-1 1
2 (m) (m)
J COV(h(U,El ),h(u,£l+k))du

1 2
- 2 p
(JOCOV(h(u,n),n)dU) T+ 0

These results are summed up in the following corollary:

N e ) s

N
COROLLARY 2.1, If n,N » = s.t. == Py 0 < p <1, and the functions

{hk} satisfy Assumption A, then under the null hypothesis (1.1),

i
/N

(2.2) o? mil lCov(h(u ™y n,e™y)au
) v ! P14k

2

2 o
cov(h(u,n),n)du) 1+ p = 0

Specializing to the symmetric case Z3 we obtian:

MRLS

under the null hypothesis (1.1), if h(j) defined for

COROLLARY 2.2.
4(n) < ® when n has distribu-

3 =0,1,2,... 18 non-linear in j and E h

tion {(l1.4), then

N
] aesi™) - 2 nim] 2 nio,0%
1

2

2 _ (m) (m) _ P . 2
o [ cov(n(g; ") hlE ) = T CoV (h(n),m). 0

-m+1
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nctions

-1)

ined for

distribu-
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3. NON-SYMMETRIC TESTS UNDER CLOSE ALTERNATIVES

given the U-observations, the probability that a V-observation will

fall in the interval ([U/

) .
x-1'Yk+m-1’ 1S

(m) _
Ty Uk im-1 k-1

under the null hypothesis. More generally, it is

= G(U! ) = G(Uu! )

D(m)
k k+m-1 k-1

when the alternative G holds. It is clear that the conditional dis-

tribution of the spacing frequencies is

(3.1) (s, /s ,...,sN)|(Ul,...,UN) A~ Mult.{(n; D.,D_,...,D_),

2 172

under the alternative G.

We will study the asymptotic behaviour of the statistic Zv under the

sequence of alternatives
(3.2) G (v) = v + —— , 0 < v < 1.

The function LN(V) and its derivatives

satisfy the following regularity condition:
ASSUMPTION B.

LN(O) = LN(l)

I
(=]
e

and there exists a continuous function L(v) s.t. for 0 < v < 1,

Ly (v) = /ﬁ[cNm - vl > L{(v) as N - o,
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Further
L(v), L1 (v), 2(v) = L. L{v), L' (v) = L. L{v)
N N dv 2
all exist and are continuous with
Ssup |lﬁ(v) =2 (v)| = o(1).

0Svs1

Under this assumption we have

(m) _ ' _ '
aDy " = n G (U g T G (T )

where op(-) is uniform in k.

Now analogous to the representation (1.8)

we mAy write that conditional on the vector T, Zv is

for the spacing frequencies,

-~

N N
(m) 1 (m)
= )} n (s yzv = T n (v ™) ] v =n
VYN k=1 k 'k VN k=1 k' "k 1 k

where the Yk's are independent Poisson random variables, with

P01(nDk).

Note then that

y(m Y, . n Poi(nDém)),
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T, these {Yﬁm)} form an (m - 1)-dependent se-

-

and that conditional on
gquence. Recall also that under the null hypothesis, we use the cor-

responding sequences

X, v Poi(nT,)  and x]im) n Poi(nT]im)).

The following two lemmas are necessary to derive the distribution of

7 under the alternatives {GN]
v

M
LEMMA 3.1. Let M,N > = s.t, S A 0 <y < 1. Then

1 (m) (m) 1 (m) (m)
= E(h (Y D - —_— E(h X T A '
/Nkzl(kk”k) /Nkzl(k<k)|k)+m
where
0 i
A{y) = I—:_E J f(u)Cov{(h(u,n),n)du.
6]

Proof: Define the function

glr,x) =

Il e~18

h(r,j)m, (x).
j=0 i
requencies,

This function is continuous and has continuous derivatives of all or-

\ ders with respect to its second argument since a Poisson random vari-

able has finite moments of all orders. Note that
k (m) e k . (m)
g( —— ,ap. ")y = ¥ hy 23y, (nD ")
+ +
th N+ 1 k j20 N + 1 i 7k
5 (m) (m)
E(h, (Y )y Io )

ind similarly

k (m)
v+ 1 T

g /D

k
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(m)

Using a Taylor expansion in the second argument around nTk ¢ We ob-

tain

‘N o+ 1 (m) k (m) 1
+ ————— nT g ( nT ) +o (—
/N k x N+ 1 'k s

where gx denotes the partial derivative with respect to the second

argument.

Notice that

b k . (m), ., _ _-(m (m)
Z i PR CLAP N B NS A E LA

We now need the two following facts (i) the distribution of

(m) _ . (m)
NT, = r Ty
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o that of a T'(m,1l) random variable, say S and (ii) if

we ob- converges 5
s ~n T(m,1) and (nlS = s) ~n Poi(s/p),
Op(ﬁi)) then N has the negative binomial distribution defined in (1.4). Thus
N

the expectation given above tends to

_k P
cov (h( ¥+ 1 /n),n) T+ 5 °
bl
) +o_(— by the law of large numbers and Lemma 2.1 of Holst and Rao [8]
P /R | Now bY
on convergence of sums to an integral, we have as N -» =
second
M-m
1 k (m) k (m)
Nkzl“N+1)nTk 9, g+ "% )
P
> 7 £ J £ (u)Cov(h(u,n),n)du.
]
= A(y). O
LEMMA 3.2. ©Let M,N =+ o s.t. % >y, 0 <y <1. Then for any real num-
bers s,t the ratio )
ot is (m) (m) % it
E —— Y - Y —_ -
(exp{ % [/ﬁ(hk( k) E(h, (Y, Yyl + § - (v, nD, ) D)
M-m . Mo,
(1), is (m) (m) it
E(expl [ == (h (X - E(h (X )] + ) == (Y, - naT T
P § /N ok Tk ) x Fy ) |1 ;_/n (v, k)}lv)

(3.3)
converges to 1 in probability.

Proof: Let
(m)

_ (m)
b = E(h (Y )Y .

Using a Taylor expansion for the numerator in (3.3), it is seen to be

bounded by
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It is clear that the second term of this expression is zero. To deal
with the third term, we expand those terms involving {9} as expres-
sions involving {2} using Taylor series, as in the proof of Lemma 3,3,

After considerable simplification, the numerator in (3.3) can be shown

to be

M-m M-m (m)

2 (m)
1 - = ) }osTlE(h (x) " yr L (xD)|m)
I ey, PR k k k+3j k+3

(m) (m)
= By () (D) BChy (X Ly

Y|
M

+ % ] (o))
1

(m)

M-m (m)
+ 2st/p % (E(h (x, "% " |2)

Next we consider the denominator in (3.3). The analog of (3.4) for
the denominator is identical except that Xim) is substituted for Yim),

(X(m)

wy = E(h, ylz)

(m)

(m)
for uk and nTk

for nDk , T for D throughout. As before, the second

term is seen to be equal to zero, and the remainder term can be shown




b D)

)12 | D]

. To deal
expres-
Lemma 3.1.

an be shown

)1
(3.4) for
~d for Yém).

, the second

an be shown
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po converge to zero in probability. The resultant expression is the
same as (3.5). Thus the ratio (3.3) converges in probability to 1. [
As noted before, under these alternatives, we have
i M3 (m)
—_— h D
E(exp( = g L5 e
M-m
it (m)
= =] 4 = .
E(exp( Z= I n oy, 0| Ly =n
1 1
applying Theorem 1 of Holst [7] we obtain
M-m
it (m)
E(exp( = ) h_(s ") |mp))
/N 7 kK
N
B -1
= (2ve{ ] ¥, = n|2DH
1
T M-m (m) N |
x E(exp( — h (Y m ] + is z (Y., - nD )lD))ds. |
/ k k k' 1= |
-m 1 1
Since
N
Ly |p o~ poi(n)
1
for any vector D, it follows that
N Pl 1
p{ } v, = n|p} = == = (2mn) Fexp(o(1)),
k b nl!
b5
by Stirling's formula. Thus, we have
M-m
it (m)
(3.6) E(exp( = h (s:77)))
PN E k' ok
M=-m
it (m)
= = h
E(E(exp( = E BENASNT IR (contd)
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(Contd)

= /%F exp(o(l))

Jn/; M-m

M
it (m) is
E{E = h Y === Y - nD
- {E (exp( Ve E () o+ 52 § (¥, =nD ) |p)

.. N
xE(exp( == ] (¥ - nD))|D)l}ds.
noM+l

Combining these results, we have

N .
THEOREM 3.1. ©Let n,N > = s.t. = > p, 0 < p < 1. Let the functions
{hk} satisfy Assumption A. Let n denote a negative binomial random
variable as in (1.4). For the sequence of alternatives (3.2) satis-

fying Assumption B, we have

N

1 (m), D 2
=— h (s ) > N(u,07)
VN k=1 k k
where
1
wo= [Joz(u>c°v(h<u,n),n)du1 — p
and
m-1 1
2 (m) (m)
g = ) J Cov(h(u,& ), h(u, g0 L)) du
j=-m+1 0 = 1+]
1 5 p2
= EJ Cov{(h(u,n) ,n)du) T+ ¢

0

Proof: In (3.6) above it is clear that the integrand is dominated by

the function fv(s) defined as

x N

(3.7) £,(s) = E|B(exp( 2= ] (¥

- nD )) |D) | (Contd)
/n e
M+1

k




){k—nDk)) |9)

s,

functions
2l random

.2) satis-

ninated by

(Contd)

e
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M
(contd) M L ¥ o)
= kB g = T, &=
[exp (n( % ; Vo
2
+ fls) = e_(l_Y)S /2 as y -

tt is clear that f(s) is integrable,

convergence Theorem we have as v > o,

/0 &
(3.8) J _ fV(S)ds > J f(s)ds.

—TT}/I‘I -

601

is

Vn

and so by the Lebesgue Dominated

application of the Extended Lebesgue Dominated Convergence Theorem

(cf. C.R. Rao [14] p. 136) gives,
tions (3.6), (3.7) and (3.8) that
) M-m
1imE (exp ( ?é z hk(sém))))
v N
- == Jw exp (1ta(y))
V21 ) g
M-m
. it (m)
x limE[E{exp!( = g hk(Xk
is N
X E(exp( == (X
PR le =
it o (m) "
= exp(itA(y))limE (exp( 7§ E hk(Sk
where
(sl,Sé,...,sN)|g W Mult(n; T T,

The result now follows from Corollary 2.1

Next,

The Pitman asymptotic relative efficiency

|

(ARE)

piwwsi T

N

is

/n

- nT.))[T)]ds

) e

o=

along with Lemmas 3.1,

(Xk

3.2 and equa-

T nTk))IE}

we take up the topic of the asymptotically most powerful test.

of one test statistic
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of level o relative to another is defined as the limit of the inverseg
ratio of sample sizes required to achieve the same limiting power at
a sequence of alternatives converging to the null hypothesis. If a
particular test has limiting power in the open interval (a,l), then

a measure of its rate of convergence, called its "efficacy", can be
computed. If we let pu(h) and cz(h) denote the asymptotic mean and
variance of the test statistic Zv(h) based on a function h(+,*), the
efficiency of the test, under certain general regularity conditions,

including asymptotic normality of the test statistic, is

u?(h)
o (h)

(see Fraser [5]1). The ARE of Zv(hl) relative to Zv(h2) can be cal-

culated as

The test with maximum efficacy has asymptotically maximum local power.

Thus for tests of the form:

Reject H_ for L (m) >

N
= h, (S c,
0 /N kzl kS )

we would want to find the function h which maximizes

ey = J 2 (u)Cov(h(u,n),n)du

P
o
0 i B

mes i (m) (m)
) J Cov(h(u,g, ") ,h(u £ J))du

-m+1l ‘0 2

1 2
e (J Cov(h(u,n),n)du)
0

1

LEMMA 3.3. The value of eh in equation (3.9) is maximized by taking
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e inverse h(u,j) = 2(u)-3,

power at |

. If a with the resulting maximum value being
), then
can be 1 2 1 -3
= +
an and maxe, [Jol (u)dul]=I[1 ol
/*), the
ditions, . . .
under alternatives of the form (3.2) satisfying Assumption B.
proof: Consider a non-degenerate statistic
N k (m)
w (h) = ] n AEI
+
\Y k=1 N 1 k |
be cal-~
with
2
Var(wW(h)) = Uh-

It is easily verified that if
>cal power.

h _(t) = uhl(t) + B

where o # 0 and B are real numbers, then

In particular we may take

N

o = [Var(hl(t))]- '

so that

Var(hz(t)) = 1.

Therefore we may assume without loss of generality that

by taking 2
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Thus, we consider the class M4 of all h satisfying Assumption A with

ci defined as in (2.2) assumed to be 1.

Then for any heM

1
= J 2 (u)Cov(h{(u,n),n)du
0

p
1+ p

By the Cauchy-Schwarz inequality,

Cov(h(u,n),n) < /Var(h(u,n)) Vvar(n)
with equality if and only if
h(u,j) = a(u)-j

where a(u) is continuous on [0,1]. Thus ey in (3.10) attains its

maximum when

h(u,j) = a(u)-J

is such that

a(u)-2(u) 2 0

Covi(n,n)
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A with 1
J pluya(ey L0 gy =2
- 0 o £
e = . .
h 1 2 : 1 2 1
[ az(u)du mo (L + o) - a(u)du)2 _b l Ml,*'_p)- |2]2
2 1 +p 2
0 p 0 p
1
J g {(u)a(u)du
0 el
= T (1 + p1 2

1

1
[J a?(w)au - tJ a(u)ydu) 212
o] 0

NI

d =
= Cor(1<u),atu))-[Var(£<u))12[1 + pl

where cor (X,Y) denotes the correlation coefficient between the random

yariables X and Y. From this it is seen that N is maximized by tak-
ing
s its a(u) = 2(u), 0 € u<sl.
Further,
1 . )
. 2 z -z
maxe. = (| 29(uwydauw)*(1 + ol .0
N 0

summing up the results of Lemma 3.3 and Theorem 3.1, we obtain:

THEOREM 3.2. If the seqguence of alternatives satisfies Assumption B,
then the asymptotically most powerful (aMP) test of the null hypoth-

| esis against the alternatives (3.2) is to reject HO when

(m)

N
N x
(3.11) T* = Z L0 71 )8y > ¢y

1

where C is a constant determined by the significance level o. The

asymptotic distribution of this optimal statistic is given by

N
(3.12) LY s

+|=

(m) mn
S — s s
7 e 1 ) ( X

y ¥ weo,0h

Z

under HO, with

II--l-lllllIllll.IIlIllIllllllllIllllIlllIlllllllllllIIlllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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m2(l + p)

2
0

1
J Lz(u)du,
0

while under the alternatives (3.2)

1
J 22 (uydu,o2)y. g
o]

REMARK 3.1. This AMP statistic T* in (3.11) has the same efficacy
as the corresponding statistic for m = 1 derived in Holst and Rao [8].
Thus for finite m, if one were to use the AMP test, there would be
no gain in considering m-spacing frequencies with m > 1. For applica-
tions of non-symmetric tests, the reader may refer to Holst and Rao

[8].

SYMMETRIC TESTS BASED ON SPACING FREQUENCIES

(m)

This section deals with the class of statistics symmetric in {Sl
(m (
52 ),...,SN

m)}, i.e., the class of statistics of the form

§ (m)
h(s )
=1 k

k
for some given function h(°*) satisfying certain regularaity assumptions.
Such tests are rotationally invariant, and thus are useful for the
problem of testing the equivalence of two distributions on a circle.

It is clear that Zs is a special case of the statistic Zv discussed
in the previous section, and its asymptotic distribution under the

null hypothesis is given by Corollary 2.2. However, since

1
J 2 (u)du = 0,
0

it follows as a consequence of Theorem 3.1 that the asymptotic distri-
bution of ZG under the sequence of alternatives (3.2) coincides with
that under the null hypothesis. Thus, symmetric statistics of the

type (4.1) have no power against such close alternatives. In order




efficacy
and Rao [8],
would be
For applica-

t and Rao

)

’

; (m
in {Sl

assumptions.

for the
a circle.
discussed

nder the

otic distri-
cides with
s of the

In order
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ro make efficiency comparisons, we consider here the more distant al-

rernatives
LN(V)
(4.2) Gx(v) = v + - , 0 < v < 1.
. N T
N
with
3 -1
LN(V) = N (GN(F (u)) - u).

For this symmetric case, we will make the slightly stronger assumption

on LN:
ASSUMPTION B*. Assume LN is twice differentiable on [0,1], and that
there is a function L(u), 0 S u < 1, which is twice continuously aif-

ferentiable and has the properties

"(u) - L' (w) | = o(l),

,
L(0) = L(1) = 0 and N" sup |Lp

o<u<sl
where %,%' denote the first and second derivatives of L, respectively.

Note that for such smooth alternatives satisfying B* the following

also hold:
1
N sup ILN(u) - L(w) | = o(D)
0<us1
and
by
N sup ]L&(u) - 2(u) | = o(l).
o<u<1

Also, here

nDim)

BlGy (Upypor) = (O lUxy )

L T T 1 ) (Contd)

il e
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(Contd; - nT;m)(l + L(k/N + )N %) + oP(N_é)

I where op(-) is uniform in k.

Let WO,Wl,...,Wn_l be i.i.d. exp(l) r.v.s. with pdf e for w = 0.

Define the rotating partial sums (0f m terms at a time)

m _ "
W= oW k = 0,lzwesln = 1

Let S stand for a I'(m,l) r.v. with pdf as in (1.5). From the repre-

(1.8), the conditional mean under the alternatives is given

sentation

by

This is of the form

N
) g(nDﬁm))

1

g(t)

This function g(t) satisfies the condition

(=]
(4.3) glt) < c (¢ 2 g

for some non-negative constants Cl and C2 if h(j) satisfies a similar

condition



T |

r w 2 0.

the repre-

res is given

es a similar
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d2
< .
(4.4) R(3) S 43 %+ D)
for nonnegative constants dl and d2. Now we utilize a result (Theor-

em 4.2) of Kuo and Rao [10] on the asymptotic distribution of the

statistic

pased on the m-spacings. Observe that the condition (4.4) on h(+),
which implies condition (4.3) on g(*), satisfies the Assumption II
required there. (See their Remark 1 immediately following Assumption

1)

THEOREM 4.1. (Kuo and Rao [10]). Let the sequence of alternatives
(4.2) satisfy Assumption B* and let h(+) satisfy condition 4.4. Then

under the alternatives (4.2),

N
LT temnt™) - mgcE B wa,e?),
VN k=1 k 0
wherxe
. 2 S 2
b o= (J 2 (u)du)Cov(g(E-),(S - m=1)7)/2
¢
and
-~ wm S
o° = ] covig( ) gt )) = (Covig(=),s))". 0
-m+1 e P

As a consequence, we obtain:

COROLLARY 4.2. Let h(*) be any function, non-linear in the integers
satisfying (4.4) and let

g(nD ) s

‘g (m)
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and let

N (m) N (m)
w,o=BC L nes"m o= I gam )

be as defined before. Then

L

D
N (uv(g) = Euv) > N(b,c),

oy o s 2
(4.6) b = (J 2 (wyawicov( ) h(m (Z), (s = m = 1))/2
0 j=0 3o

m-1 © w
Yy cov( I h(irm.(
-m+1 3=0 3

(4.7) c

oo

- (covi T mnm (Sy,sn?oop
o ite

The next two lemmas are necessary for obtaining the asymptotic dis-

tribution of 2* under the alternatives.

LEMMA 4.3. Let h be any function, non-linear in the integers satis-
fying (4.4) and suppose that the sequence of alternatives (4.2) satis-

fies Assumption B*. Then with probability one,

N
it (m) -~ dt
K, (D) = Elexp(- == % (hs, ™) = w@D ) > exp(——— )

where

for all real t,

| (4.8) a = mil E(cov(n(e!™), ncl™
) ov(h{g, " ) (kg
-m+1

(3) m=3) L (3),

)|W1 '"1+3 "T14m

o( I n G =S (St
e P i
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Recall the multinomial representation (1.8). Applying again

proeli

phaorem 4 of Holst [7]1, (p. 553), with (xk'Y“} of that theorem re-
| o 1.9

plateﬁ by Polsson r.v.s, we obtain a result similar to pur Theorem
(see also Theorem 2.1 of Holst and Rao [8]). Thus we need to est-

aplish the regquired joint asymptotic normality, caluulate-na and Bq

and show that

Let {Y,} be independent Poisson r.v.s with
1
Y, ~ Poi .
5 01(nDk)

The joint asymptotic normality of

_1 M-m (m) 1 M
| N 2 z h(Yk ) and N 2 Z Yk
1 1
- ))
is easily established by verifying the Liapunov condition (2.1) for
the (m-1) dependent r.v.s
(m)
Y = «h(Y + Y
" [a*h( K ) b k]
tic dis-
for real numbers a and b. Now,
rs satis- -1 mil Mim (m) (m)
. A = limN Cov{h(Y )y,h(Y L)) .
. i +
4.2) satis q o, j=-m+l k=1 k k+3

Using Taylor expansions on the individual terms of this sum as in the

proof of Lemmas 3.1 and 3.2 and taking the limit, we obtain:

m-1

{(m) (m) (3) . (m=3) _(3)
a = 1 (qE (cov(n (g™ ) n(E iy Wy ? ! w7 W 00
4 J=-m+1 1 1+3 1 1+3 1+m
and
g = /pg E( L h(3 (3 = s/p)m (8/0)),
q j=0 3

B R
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which tend to:

m=-1
_ (m) (m) (3y (m=3) _(3)
B, = _3;1 B (Cov(h (g™ ) miE L) [Wy 7 Wy g™ W hn

))

and
& s s
B = /pE( L h(NG - ST 00
1 N o e
3=0
as q@ * 1. From this it can be checked that
2
da = Al = Bl
is as in (4.8).
LEMMA 4.4.
m-1 2
m m
(a.9) ceam 1 covime™imeily = [cov(n(n),m1°.
y=-m+l 1 1+3 +

proof: From equations (4.6) and (4.8) above, we have

m-1 ® Wl hos wl +
(4.10) c+da= ) cov( [ n(hm C =)y Toon(im,(
—m+l 3=0 Jf §=0 :

- (covi( ] h(a')n.<§),s))2
520 it

f mil £ (cov(n(e!™ ) nel™) |w
ov(h(g, ")/l

k=-m+1

(3) . (m=3) ()
1 Wk ’Wl+m))

Sem( J mp -2 yr (£1111%
520 P R

The first and third terms in (4.10), both summations on k from -m+1

to m-1 can be combined as
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m-1
m m
I7 covinie!™y me{T.
k=-m+1

The second term of (4.10) 1is

o

fcovi I n(hm,(2y,81°
520 it

@ -3 m-1 5
={J I h(j)wj(-‘f-)(s-m) E—S——= ds)

- !
0 §=0 (m-1)!
ool m+j-1 3
. 1 P m_ ., m 2!
=t —t— ]| n(i ( ) M5 -203
1 + . 1+ p 1 +
P o520 3 p o
2
2
= —Lf—— [covin(m,m1%,
(1 + p)
where n has the negative binomial distribution, (1.4). Similarly it
can be shown that the last term in (4.10)
2
(h(n),n)l .
S S 2 3
E h(j j = = yw, (= P 2
Pt jzo 2 fn ) J(D))] = [Cov(h(n),n)] -
(L + p)

Combining these results one obtains egqguation (4.9). [

Now we can prove the major result of this section.

THEOREM 4.2. suppose that the function h(+), non-linear in the in-

tegers, satisfies (4.4), and that the sequence of alternatives (4.2)

satisfies B*. Then
3) (3)
'wl+m)) N D
2
= 7 ;es™y < e Faw,e®),
/N 2 k
k=1
where
from -m+1 1 2
2
TR (J lz(u)du)Cov(h(n),n2 - n = Zbmtlbn y/2¢ I_E__ ) o
0 P + p

S S
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and

i
m-1 2
2 (m) (m) o
g ) Cov(h(§g Yoh(ED L)) -
LI 1 1+] (1L + p)

[Cov(h(n),m1?2
function

Proof: Using conditional expectation, we may write the characteristi.

5 N

it (m)
E hr—1 h(s
[exp ( e kzl (h(s ")

E(h(n))))1

N
(m)
EpB(exp( S kzl (h(s ") = Eh(n))) |D)

where
it
3,(R) = exp( 2= [u, (D) = Eu 1), )
and i
. N
it m
K (D) = E(exp( == z [h(S( )) = U (Q)])|9)-
v YN L2 k v
k=1
From Corollary 4.2 it follows that

1 ? i

_— - -> b

7 (u, (R) E(u )] N(b,c)

with b and ¢ defined as in (4.6) and (4.7), respectively. So JV(Q)
converges in distribution. By Lemma 4.3,
2
dt
3 = =T
K, (D) * exp( - ( ——)) i
with probability one, where d is as given in equation (4.8).

P

is seen to
2

Combining these two results, the product Jv(Q)Kv(

con-—



TESTS FOR THE TWO-SAMPLE PROBLEM 615

gerge in distribution with probability one. Since

<
lo, @k (2] < 1,

this also implies convergence of the moments, so

racteristic

(c + d)t2

7 )

E (3 (D)K (D)) > exp (ibt

By the continuity theorem, a straightfoward calculation, and Lemma

4.4, the result now follows. D

Next, we will find the asymptotically most powerful test of the form
gz%; i.e., the one with the maximum efficacy against a specific se-

v

quence of the alternatives (4.2) that satisfies Assumption B*. For

tests of the form:

13 (m)
Reject H_ for —= h(s )y > C,
0 /N k=1 k
we want to find the function h(+) which maximizes
s 2 2 2(m+ 1)n
( 27 (uydu)Cov(h(n),n -n - __—77—_— y /2
) 0
(4.11) e, mil o o 2 =
[ Cov(h(&; ") ,h(E; 1)) - [Cov(h(n),n)171%
e 1 1+k 1+p
0 2
* A 1+p )

The following result is established by methods similar to those of

J (D
b v(*) Lemma 3.3.

LEMMA 4.5. The value of ey in (4.11) is maximized by taking

hix) = x2,

with resulting maximum value,

n to con-

e e
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B 2
()] 27 (u)du)
0 “3m(m + 1) 0
(1 + p) am + 2 g

Combining the result of Theorem 4.2 with Lemma 4.5 we obtain

THEOREM 4.3. The asymptotically locally most powerful test of the
null hypothesis (1.1) against the sequence of alternatives (4.2) sat-

isfying Assumption B¥*, is to reject HO when

X (m) | 2
(4.12) = ] (s, )7 > ¢

where C is a constant determined by the significance level a. The

asymptotic distribution of T* is given by

N
1 m), 2 m(m + 1 + P 2
(@a1n = ] (s{™y2 _mmr 2 o)) % w00
N k=1 ¢
under H_, with
2 2m(l + 2{2 + 1) {m + 1)
(4.14) o° = B) e .
3p
while under the alternatives (4.2),
1 5 (m) .2 m(m+1l+p) . D Lo m(m+1) 2
(4.15) = I s, = e —vN((J 2% (w) au) === 000
k=1 [ 0 [
REMARK 4.1. It is important to note that the optimal statistic, T*,

is independent of the particular sequence of alternatives chosen, but

that its power is not.

REMARK 4.2. From the equation
1
2
{J 2% (u)du)
0 am |, 3 3 3 1 3
B — _—t = —_— + m—f
®h 1+ p L3 8  1éem 3t ot =31
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for the statistic T*, it is clear that increasing m increases the ef-

as does decreasing

ficacYr
N\)
p = lim o
ain Ve v
st of the For m > 1, these tests have higher asymptotic efficiency compared to
s (4.2) sat- pixon's test which corresponds to m = 1 (cf. Dixon, [4]).
REMARK 4.3. For given significance level a, let 2z, be such that
@(za) =1 = a,
e
1 a. The wher
b 2
-t
o (x) = J == d /%3¢
e Y2T
is the standard normal distribution function. Then the AMP test of

level o is given explicitly by:

N

Reject H, if 2z} = ;ﬁ y [(Sﬁm))Z L BGm A1+ p) g c,
N k=1 4]
where
2 1
3 =Z[2m(2m+11fm+1;{1+p) 12
+ o ; 4 *
mim+1) .2, | " 3p
2
P
The asymptotic power of this test is seen to be
tistic, T*,
chosen, but 1 1
2 3m{m + 1) 3
* = a e .
By (55 >0 = a(zg ¢ (Joz (wydu) [ =02k 12/(1 + p))

)];
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